Correction for urine glucose excretion

Matsuda Index

Use of a SGLT-2 inhibitor

\[
\text{HOMA-IR} = \frac{R_d}{(R_{au} - u)} \cdot \text{HOMA-IR}_u \\
\text{Matsuda index} = \sqrt{\frac{(R_{au} - u) \cdot (D - u_D)}{R_d} \cdot \text{Matsuda index}_u}
\]

where,
- HOMA-IR: true HOMA-IR, HOMA-IR$_u$: apparent HOMA-IR with urine excretion
- Matsuda index: true Matsuda index, Matsuda index$_u$: apparent Matsuda index with urine excretion
- R_d: rate of appearance of glucose without urine excretion
- R_{au}: rate of appearance of glucose with urine excretion
- u: urine glucose excretion during basal state
- D: glucose load (=75g/analyzed time [min])
- u_D: urine glucose excretion during oral glucose load (excreted during analyzed time [g/min])

During basal steady state, R_d (glucose disposal) = R_d = R_{au} - u
(R_{au} may be increased by the elevated level of glucagon
J Clin Invest. 2014 Feb 3;124(2):509-14.)

\[
\text{HOMA-IR} = \frac{R_d}{(R_{au} - u)} \cdot \text{HOMA-IR}_u = \text{HOMA-IR}}_u \\
\text{Matsuda index} = \sqrt{\frac{(R_{au} - u) \cdot (D - u_D)}{R_d} \cdot \text{Matsuda index}_u} = \sqrt{\frac{(75 - u_D)}{75} \cdot \text{Matsuda index}_u}
\]

where,
- HOMA-IR: true HOMA-IR, HOMA-IR$_u$: apparent HOMA-IR with urine excretion
- Matsuda index: true Matsuda index, Matsuda index$_u$: apparent Matsuda index with urine excretion
- R_d: rate of appearance of glucose without urine excretion
- R_{au}: rate of appearance of glucose with urine excretion
- u: urine glucose excretion during basal state
- D: glucose load (=75g/analyzed time [min])
- u_D: urine glucose excretion during oral glucose load (excreted during analyzed time [g/min])
Correction for glucose dosage

Matsuda Index

\[
\text{Matsuda index} = \sqrt{\frac{D}{D_x}} \cdot \text{Matsuda index}_x
\]

\[
= \sqrt{\frac{D}{75}} \cdot \text{Matsuda index}_x
\]

where,
- Matsuda index: true Matsuda index
- Matsuda index$_x$: apparent Matsuda index with urine excretion
- D$_x$: actual glucose dose applied
- D: glucose load for Matsuda index (=75g)

Start from HOMA
Induction of HOMA-IR (1)

\[
\begin{align*}
\frac{dg}{dt} &= -k \cdot g + \frac{R_a}{V} \\
\frac{dk}{dt} &= -a_1 \cdot k + a_2 \cdot i
\end{align*}
\]

\(a_1, a_2 \) positive constant
\(g, i \) plasma glucose, insulin conc.
\(k \) the fractional disappearance rate of glucose (insulin action)
\(V \) the volume of distribution of glucose
\(R_a \) the glucose input rate

\(S_I = \frac{a_2}{a_1} \)

Induction of HOMA-IR (2)

\[
\begin{align*}
\frac{dg}{dt} &= -k \cdot g + \frac{R_a}{V} \\
\frac{dk}{dt} &= -a_1 \cdot k + a_2 \cdot i
\end{align*}
\]

Steady state:

\[
\begin{align*}
\frac{dg}{dt} &= 0 \\
\frac{dk}{dt} &= 0
\end{align*}
\]

Insulin sensitivity (steady state)

\[
S_I = \frac{k}{i} = \frac{a_2}{a_1} = \frac{R_a}{V \cdot g \cdot i} = \frac{R_a}{g \cdot i}
\]

\[
\text{HOMA-IR}_0 = \frac{1}{S_I} = \frac{g \cdot i}{\text{const}}
\]

(Radziuk J: J Clin Endocrinol Metab 85: 4426-4433, 2000)
Induction of HOMA-IR_u with SGLT2I (1)

\[
\begin{aligned}
 \frac{dg}{dt} &= -k \cdot g + \frac{R_a - u}{V} \\
 \frac{dk}{dt} &= -a_1 \cdot k + a_2 \cdot i
\end{aligned}
\]

In insulin sensitivity

\[S_I = \frac{a_2}{a_1} \]

\(a_1, a_2 \) positive constant

\(g, i \) plasma glucose, insulin conc.

\(k \) the fractional disappearance rate of glucose (insulin action)

\(V \) the volume of distribution of glucose

\(u \) the glucose excretion rate from urine

\(R_a \) the glucose input rate

Induction of HOMA-IR_u with SGLT2I (2)

\[
\begin{aligned}
 \frac{dg}{dt} &= -k \cdot g + \frac{(R_a - u)}{V} \\
 \frac{dk}{dt} &= -a_1 \cdot k + a_2 \cdot i
\end{aligned}
\]

Steady state:

\[
\begin{aligned}
 \frac{dg}{dt} &= 0 \\
 \frac{dk}{dt} &= 0
\end{aligned}
\]

Insulin sensitivity (steady state)

\[S_I = \frac{k}{i} = \frac{a_2}{a_1} = \frac{(R_a - u)}{V \cdot g \cdot i} = \frac{(R_a - u) \div V}{g \cdot i} \]

\[\text{HOMA-IR} = \frac{1}{S_I} = \frac{g \cdot i}{\text{const'}} \]

\(g, i, \) and \(S_I \) are different from those when \(u=0 \).
If insulin sensitivity (steady state) is the same,

\[\text{HOMA-IR}_u = \frac{g_{0u} \cdot i_{0u}}{\text{const}} \]

HOMA-IR, is calculated by using the same way as HOMA-IR.

If insulin sensitivity (steady state) is the same,

\[
\text{HOMA-IR} = \frac{1}{S_l} = \frac{1}{S_{l_u}} \\
= \frac{g_{0u} \cdot i_{0u} \cdot R_a \div V}{(R_{au} - u) \div V} \\
= \frac{R_a}{(R_{au} - u)} \cdot g_0 \cdot i_0 = (g_{0u} \cdot i_{0u}) \cdot \frac{R_a}{(R_{au} - u)}
\]

Oral glucose administration
After glucose administration

MCR (metabolic clearance rate)
\[
\frac{\text{Dose of glucose}}{\text{AUC of PG conc.}}
\]
(non-steady state)

After glucose administration

Insulin Sensitivity during OGTT

\[
\text{MCR of glucose} \div \text{Average Insulin conc.}
\]

\[
= \frac{\text{Dose of glucose}}{\text{PG} \times \text{Insulin}}
\]
Oral glucose administration
Basal with a SGLT-2 inhibitor

In response to glucose appearance (BASAL STATE)

\[MCR + MCR_u = \frac{\text{Endogenous Glucose Production}[\text{mg/min}]}{\text{AUC of PG conc.}} \]

\[MCR_u = \frac{\text{Urine Glucose Excretion [mg/min]}}{\text{AUC of PG conc.}} \]
In response to glucose appearance
(BASAL STATE)

Insulin Sensitivity during Basal State can be estimated by

\[
\frac{\text{MCR of glucose}_0}{\text{Average Insulin conc.}_0} = \frac{\text{EGP}_0}{\text{PG}_0 \times \text{Insulin}_0} = \frac{\text{EGP}_0}{k \times \text{HOMA-IR}}
\]

When UGE = 0,

\[
\text{HOMA-IR} = \frac{\text{PG}_0 \times \text{Insulin}_0}{k}
\]

\(k\): constant

In response to glucose administration
(BASAL STATE)

\[
\text{MCR}_u = \frac{\text{Endogenous Glucose Production}_u [\text{mg/min}]}{\text{AUC of PG conc.}_u} - \frac{\text{Urine Glucose Excretion} [\text{mg/min}]}{\text{AUC of PG conc.}_u}
\]

EGP: Endogenous Glucose Production
UGE: Urine Glucose Excretion
In response to glucose appearance

(BASAL STATE)

Insulin Sensitivity during Basal State

can be estimated by

\[
\frac{MCR_u}{\text{Average Insulin conc.}_u} = \frac{EGP_u - UGE}{PG_u \times \text{Insulin}_u} = \frac{EGP_u - UGE}{k \times HOMA-IR_u}
\]

\[HOMA-IR_u = \frac{PG_u \times \text{Insulin}_u}{k}\]

\[k: \text{constant}\]

If insulin sensitivity is the same despite of urine glucose excretion,

\[
\frac{MCR_u}{\text{Insulin}_u} = \frac{MCR_0}{\text{Insulin}_0}
\]

\[
\frac{EGP_u - UGE}{k \times HOMA-IR_u} = \frac{EGP_0}{k \times HOMA-IR_0}
\]

\[HOMA-IR_0 = \frac{EGP_0}{EGP_u - UGE} \cdot HOMA-IR_u\]
Oral glucose administration

Glucose loading with a SGLT-2 inhibitor

AUC of PG conc. (non-steady state) = Dose of glucose / AUC of PG conc. (non-steady state)

After glucose administration (OGTT)

MCR + MCRu

Glucose Dose
Endogenous glucose production = 0

MCR

Urine excretion (MCRu)

PG

mean

0 ~180min
After glucose administration (OGTT)

\[
MCR_u = \frac{\text{Dose of glucose \, [mg/min]}}{\text{AUC of PG conc.}_u - \frac{\text{Urine Glucose Excretion \, [mg/min]}}{\text{AUC of PG conc.}_u}}
\]

D: Dose of glucose
UGE: Urine Glucose Excretion

After glucose administration (OGTT)

Insulin Sensitivity can be estimated by

\[
\frac{MCR_u}{\text{Average Insulin conc.}_u} = \frac{D - UGE}{PG_u \times \text{Insulin}_u}
\]
If insulin sensitivity is the same despite of urine glucose excretion,

\[
\frac{\text{MCR}_u}{\text{Insulin}_u} = \frac{\text{MCR}_0}{\text{Insulin}_0}
\]

\[
\frac{D - \text{UGE}}{\text{PG}_u \times \text{Insulin}_u} = \frac{D}{\text{PG}_0 \times \text{Insulin}_0}
\]

Correction to Matsuda index

Glucose loading with a SGLT-2 inhibitor
When a SGLT-2 inhibitor is used,

\[
\text{Matsuda index}_h = \frac{10000}{\sqrt{g_{0u} \cdot i_{0u} \cdot g_u \cdot i_u}}
\]

\[
g_{0i_0} = (g_{0u} \cdot i_{0u}) \cdot \frac{R_a}{(R_{au} - u)} \quad g \cdot i = (g_u \cdot i_u) \cdot \frac{D}{(D-u_D)}
\]

\[
\text{Matsuda index} = \frac{10000}{\sqrt{g_0 \cdot i_0 \cdot g \cdot i}}
\]

\[
= \frac{10000}{\sqrt{(g_{0u} \cdot i_{0u}) \cdot \frac{R_a}{(R_{au} - u)} \cdot (g_u \cdot i_u) \cdot \frac{D}{(D-u_D)}}}
\]

When a SGLT-2 inhibitor is used,

\[
\text{Matsuda index}
= \frac{\text{Matsuda index}_h}{\sqrt{\frac{R_a}{(R_{au} - u)} \cdot \frac{D}{(D-u_D)}}}
= \sqrt{\frac{(R_{au} - u) \cdot (D-u_D)}{R_a \cdot \frac{D}{(D-u_D)}}} \cdot \text{Matsuda index}_h
\]